
Public

SMART CONTRACT AUDIT REPORT

for

AUDITCHAIN

Prepared By: Shuxiao Wang

Hangzhou, China
November 26, 2020

1/29 PeckShield Audit Report #: 2020-108

sxwang@peckshield.com


Public

Document Properties

Client Auditchain
Title Smart Contract Audit Report
Target Auditchain
Version 1.0-rc
Author Xuxian Jiang
Auditors Huaguo Shi, Jeff Liu, Xuxian Jiang
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0-rc November 26, 2020 Xuxian Jiang Release Candidate
0.2 November 22, 2020 Xuxian Jiang Additional Findings
0.1 November 20, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/29 PeckShield Audit Report #: 2020-108



Public

Contents

1 Introduction 5
1.1 About Auditchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 About PeckShield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Findings 10
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Detailed Results 12
3.1 Oversized totalReward May Lock User Stakes . . . . . . . . . . . . . . . . . . . . . 12
3.2 Improved Sanity Checks For System Parameters . . . . . . . . . . . . . . . . . . . . 14
3.3 AUDT Tokens Pausable For Migration, But Not Transfer . . . . . . . . . . . . . . . 16
3.4 Burnability of Locked Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Suggested Uses of SafeMath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Conclusion 22

5 Appendix 23
5.1 Basic Coding Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Constructor Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Ownership Takeover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.3 Redundant Fallback Function . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.4 Overflows & Underflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.5 Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.6 Money-Giving Bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.7 Blackhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.8 Unauthorized Self-Destruct . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.9 Revert DoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3/29 PeckShield Audit Report #: 2020-108



Public

5.1.10 Unchecked External Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.11 Gasless Send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.12 Send Instead Of Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.13 Costly Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.14 (Unsafe) Use Of Untrusted Libraries . . . . . . . . . . . . . . . . . . . . . . 25
5.1.15 (Unsafe) Use Of Predictable Variables . . . . . . . . . . . . . . . . . . . . . 26
5.1.16 Transaction Ordering Dependence . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.17 Deprecated Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Semantic Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Additional Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Avoid Use of Variadic Byte Array . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Make Visibility Level Explicit . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.3 Make Type Inference Explicit . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.4 Adhere To Function Declaration Strictly . . . . . . . . . . . . . . . . . . . . 27

References 28

4/29 PeckShield Audit Report #: 2020-108



Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
Auditchain, we outline in this report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contract can be further improved due to the presence
of several issues. This document outlines our audit results.

1.1 About Auditchain

Auditchain is leading the development of the DCARPE Assurance and Disclosure Protocol, (the “Proto-
col“). The Protocol proposes to enable real time or near real time financial reporting as well as the
continuous audit of (i) compliance with functional objectives of enterprise systems and organizational
controls, (ii) data structure and accuracy and (iii) disclosure control architecture and compliance
objectives with Generally Accepted Accounting Principles in the USA (“GAAP”) and International

Financial Reporting Standards outside the USA, (“IFRS”). Auditchain allows for enterprises to pro-
vide stakeholders with the highest levels of assurance through decentralized consensus-based enter-
prise external validation.

The basic information of Auditchain is as follows:

Table 1.1: Basic Information of Auditchain

Item Description
Issuer Auditchain

Website https://www.auditchain.com
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report November 26, 2020

5/29 PeckShield Audit Report #: 2020-108



Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/DAOCapsule/AUDT-Capsule-Lift-Off.git (c199da7)

1.2 About PeckShield

PeckShield Inc. [16] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

6/29 PeckShield Audit Report #: 2020-108

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com


Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/29 PeckShield Audit Report #: 2020-108



Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

8/29 PeckShield Audit Report #: 2020-108



Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/29 PeckShield Audit Report #: 2020-108



Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Auditchain implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/29 PeckShield Audit Report #: 2020-108



Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 3 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key Auditchain Audit Findings

ID Severity Title Category Status
PVE-001 Low Oversized totalReward May Lock User Stakes Numeric Errors Fixed
PVE-002 Low Improved Sanity Checks For System Parame-

ters
Coding Practices Fixed

PVE-003 Informational AUDT Tokens Pausable For Migration, But
Not Transfer

Business Logic Confirmed

PVE-004 Medium Burnability of Locked Accounts Business Logic Confirmed
PVE-005 Low Suggested Uses of SafeMath Coding Practices Fixed

Beside the identified issues, upon the observation that compiler upgrades might bring unexpected
compatibility or inter-version consistencies, it is always suggested to use fixed compiler versions
whenever possible. As an example, we highly encourage to explicitly indicate the Solidity compiler
version, e.g., pragma solidity 0.6.6 instead of pragma solidity ^0.6.6.

In the meantime, we emphasize that for any user-facing applications and services, it is always
important to develop necessary risk-control mechanisms and make contingency plans, which may
need to be exercised before the mainnet deployment. The risk-control mechanisms should kick in at
the very moment when the contracts are being deployed on mainnet. Please refer to Section 3 for
details.

11/29 PeckShield Audit Report #: 2020-108



Public

3 | Detailed Results

3.1 Oversized totalReward May Lock User Stakes

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: High

• Target: Staking

• Category: Numeric Errors [9]

• CWE subcategory: CWE-190 [3]

Description

The Auditchain protocol allows AUDT holders stake their tokens for rewards. Specifically, users can
stake AUDTs into the pool and get tradable ERC20-compliant staking receipts. With staking receipts,
the user can redeem for a proportional share of the pool (with pre-configured totalReward) and a
ratio of the governance token, i.e., DCAP, pursuant to the agreed minting schedule after the expiration
of the staking period. If redeemed before the expiration, the user will get their staked amount back.

To elaborate, we show below the redeem() logic. If we examine the redemption logic after the
staking expiration, the users can expect to receive additional rewards beyond the previously staked
amounts (line 252).

240 /**
241 * @dev Function to redeem contribution. Based on the staking period function may

send rewards or just deposit.
242 * If user redeems after staking ended , reward will be added to deposit. If staking

is still in progress ,
243 * user only receives amount contributed.
244 * @param amount number of tokens being redeemed
245 */
246 f unc t i on redeem ( uint256 amount ) pub l i c {
247
248 r equ i r e ( _stakingToken . ba lanceOf (msg . sender ) >= amount , "Staking:redeem - you are

claiming more than your balance." ) ;
249 _burnStakedToken ( amount ) ;
250
251 i f ( block . number > stak ingDateEnd ) {

12/29 PeckShield Audit Report #: 2020-108



Public

252 _de l i v e rRewards ( amount ) ;
253 emit LogTokensRedeemed (msg . sender , r e tu rnEarn ingsPerAmount ( amount ) ) ;
254 }
255 e l s e {
256 _retu rnDepos i t ( amount ) ;
257 emit LogTokensRedeemed (msg . sender , amount ) ;
258 }
259 }

Listing 3.1: Staking :: redeem()

The rewarding logic is implemented in _deliverRewards(). In this helper routine, it firstly computes
the amountRedeemed (line 279) that will be returned back to the user. This amount is computed as
amount * returnEarningRatio()).div(1e18) in returnEarningsPerAmount().

271 /**
272 * @dev Function to deliver rewards called from redeem () function
273 * @param amount number of tokens to deliver (token originally deposited + staking

rewards)
274 */
275 f unc t i on _de l i v e rRewards ( uint256 amount ) i n t e r n a l {
276
277 uint256 amountRedeemed ;
278
279 amountRedeemed = retu rnEarn ingsPerAmount ( amount ) ;
280 r e l e a s e d [msg . sender ] = r e l e a s e d [msg . sender ] . add ( amountRedeemed ) ;
281 t o t a l R e l e a s e d = t o t a l R e l e a s e d . add ( amountRedeemed ) ;
282 _auditToken . s a f eT r a n s f e r (msg . sender , amountRedeemed ) ;
283 _de l i ve rGovernanceToken ( ( governanceTokenRat io ∗ amount ) / 1 e18 ) ;
284 LogRewardDe l i ve red (msg . sender , amountRedeemed ) ;
285 }

Listing 3.2: Staking :: _deliverRewards()

Next, if we follow the execution logic, returnEarningRatio() returns (totalReward.mul(1e18)/

stakedAmount)+ 1e18 (line 154) after staking expiration. We notice the multiplication of totalReward
.mul(1e18) may overflow if totalReward is initially configured unreasonably large. The overflow con-
sequence directly reverts every redemption attempt if the staking period ends.

145 /**
146 * @dev Function to return earning ratio
147 * @return number representing earning ratio with precision to 18 decimal values
148 */
149 f unc t i on r e t u r nEa r n i n gRa t i o ( ) pub l i c view re tu rn s ( uint256 ) {
150
151 i f ( stakedAmount == 0)
152 re tu rn to ta lReward ; // At this stage there is no contributions
153 e l s e
154 re tu rn ( to ta lReward . mul (1 e18 ) / stakedAmount ) + 1e18 ;
155 }
156
157 /**

13/29 PeckShield Audit Report #: 2020-108



Public

158 * @dev Function to return earning ratio per given amount
159 * @param amount - amount in question
160 * @return number representing earning ratio for given amount
161 */
162 f unc t i on r e tu rnEarn ingsPerAmount ( uint256 amount ) pub l i c view re tu rn s ( uint256 ) {
163
164 re tu rn ( amount ∗ r e t u r nEa r n i n gRa t i o ( ) ) . d i v (1 e18 ) ;
165 }

Listing 3.3: Staking :: returnEarningsPerAmount()

Recommendation Validate the pre-configured totalReward to ensure no overflow may occur.

Status The issue has been fixed by this commit: c69e52f.

3.2 Improved Sanity Checks For System Parameters

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Staking

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [2]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Auditchain protocol is no exception. Specifically, if we examine the AlphaPerp

contract, it has defined the following parameters: stakingDateStart, stakingDateEnd, totalReward,
and governanceTokenRatio. These parameters define the block height to start staking, the block
height to stop staking, the total reward amount, as well as the governance token ratio for issuance,
respectively.

Our analysis shows the update logic on these parameters can be improved by applying more
rigorous sanity checks. Based on the current implementation, certain corner cases may lead to an
undesirable consequence. For example, an unlikely mis-configuration of totalReward will revert every
redeem() operation after the staking period, hence locking user stakes.

To elaborate, we show below its code snippet of updateStakingPeriods(). This routine updates
the block heights to start and stop staking. However, they can be improved to validate that the
given _stakingDateStart and _stakingDateEnd fall in an appropriate range.

115 /**
116 * @dev Function to manually update staking periods
117 * @param _stakingDateStart - start date of staking
118 * @param _stakingDateEnd - end date of staking

14/29 PeckShield Audit Report #: 2020-108

https://github.com/DAOCapsule/AUDT-Capsule-Lift-Off/commit/c69e52f33fe53a92a004bd5c36c26f2e81f64b60


Public

119 */
120 f unc t i on upda t eS t ak i n gPe r i o d s ( uint256 _stak ingDateSta r t , uint256 _stakingDateEnd )

pub l i c onlyOwner ( ) {
121
122 r equ i r e ( _stakingDateEnd != 0 , "Staking:constructor - Staking end date can’t be 0

" ) ;
123 r equ i r e ( _s tak ingDateS ta r t != 0 , "Staking:constructor - Staking start date can’t

be 0" ) ;
124 s t a k i n gDa t eS t a r t = _stak ingDateS ta r t ;
125 s tak ingDateEnd = _stakingDateEnd ;
126
127 }

Listing 3.4: Staking :: updateStakingPeriods()

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.
An example revision to updateStakingPeriods() is shown below.

115 /**
116 * @dev Function to manually update staking periods
117 * @param _stakingDateStart - start date of staking
118 * @param _stakingDateEnd - end date of staking
119 */
120 f unc t i on upda t eS t ak i n gPe r i o d s ( uint256 _stak ingDateSta r t , uint256 _stakingDateEnd )

pub l i c onlyOwner ( ) {
121
122 r equ i r e ( _s tak ingDateS ta r t > block . number , "Staking:constructor - Staking start

date is already passed" ) ;
123 r equ i r e ( _stakingDateEnd > s t ak i ngDa t eS t a r t , "Staking:constructor - Staking end

date can’t be smaller than stakingDateStart" ) ;
124 s t a k i n gDa t eS t a r t = _stak ingDateS ta r t ;
125 s tak ingDateEnd = _stakingDateEnd ;
126
127 }

Listing 3.5: Revised Staking :: updateStakingPeriods()

Status The issue has been fixed by this commit: c69e52f.

15/29 PeckShield Audit Report #: 2020-108

https://github.com/DAOCapsule/AUDT-Capsule-Lift-Off/commit/c69e52f33fe53a92a004bd5c36c26f2e81f64b60


Public

3.3 AUDT Tokens Pausable For Migration, But Not Transfer

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: GovernanceToken, Token

• Category: Time and State [8]

• CWE subcategory: CWE-663 [4]

Description

Both AUDIT token and DCAP are ERC20-compliant tokens. Accordingly, there is a need for their contract
implementations, i.e., Token and GovernanceToken, to follow the ERC20 specification. As part of our
audit, we examine the list of API functions defined by the ERC20 specification and validate whether
there exist any inconsistency or incompatibility in the implementation or the inherent business logic.
Since both token contracts share a similar implementation, we use AUDIT as the representative for the
following discussion.

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Auditchain” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “AUDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the
audited Auditchain. In the following two tables, we outline the respective list of basic view-only

functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted

16/29 PeckShield Audit Report #: 2020-108



Public

ERC20 specification.

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approve() event Is emitted on any successful call to approve() ✓

Meanwhile, we notice in the transferFrom() routine, there is a common practice that is miss-
ing but widely used in other ERC20 contracts. Specifically, when msg.sender = _from, the current
transferFrom() implementation disallows the token transfer if msg.sender has not explicitly allows
spending from herself yet. A common practice will whitelist this special case and allow transferFrom

() if msg.sender = _from even there is no allowance specified.

639 /**
640 * @dev See {IERC20 -transferFrom }.
641 *
642 * Emits an {Approval} event indicating the updated allowance. This is not
643 * required by the EIP. See the note at the beginning of {ERC20};
644 *
645 * Requirements:
646 * - ‘sender ‘ and ‘recipient ‘ cannot be the zero address.

17/29 PeckShield Audit Report #: 2020-108



Public

647 * - ‘sender ‘ must have a balance of at least ‘amount ‘.
648 * - the caller must have allowance for ‘‘sender ‘‘’s tokens of at least
649 * ‘amount ‘.
650 */
651 f unc t i on t r a n s f e rF r om ( address sender , address r e c i p i e n t , uint256 amount ) pub l i c

v i r t u a l o v e r r i d e r e tu rn s ( bool ) {
652 _t r an s f e r ( sender , r e c i p i e n t , amount ) ;
653 _approve ( sender , _msgSender ( ) , _a l lowances [ sender ] [ _msgSender ( ) ] . sub ( amount , "

ERC20: transfer amount exceeds allowance" ) ) ;
654 re tu rn t rue ;
655 }

Listing 3.6: flat /Token.sol

In addition, we perform a further examination on certain features that are permitted by the ERC20
specification or even further extended in follow-up refinements and enhancements (e.g., ERC777),
but not required for implementation. These features are generally helpful, but may also impact or
bring certain incompatibility with current DeFi protocols. Therefore, we consider it is important to
highlight them as well. This list is shown in Table 3.3.

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausible The token contract allows the owner or privileged users to pause the token
transfers and other operations

—

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

✓

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

✓

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

✓

Hookable The token contract allows the sender/recipient to be notified while send-
ing/receiving tokens

—

Permittable The token contract allows for unambiguous expression of an intended
spender with the specified allowance in an off-chain manner (e.g., a per-
mit() call to properly set up the allowance with a signature).

—

We point out that both AUDIT token and DCAP are not pausable even though the contract Pausable
is inherited. The Pausable feature is used for migration purpose only, not for the purpose of pausing
the entire token.

18/29 PeckShield Audit Report #: 2020-108



Public

Recommendation Improve the transferFrom() logic by considering the special case when
msg.sender = _from. In the meantime, consider the support of permit() (in EIP-2612) for better
integration and usability.

Status This issue has been confirmed.

3.4 Burnability of Locked Accounts

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: GovernanceToken, Token

• Category: Business Logic [7]

• CWE subcategory: CWE-754 [5]

Description

As mentioned in Section 3.3, both AUDIT and DCAP are ERC20-compliant tokens. And the ERC20-
compliance checks show that they are burnable, mintable, ownable, with the locking ability on a
per-user basis.

To elaborate, we show below the code snippet of ERC20Burnable. Note that both AUDIT and DCAP

token contracts directly inherit from ERC20Burnable. Although both AUDIT and DCAP support the locking
of a particular user, there is no locking-related validation checks in ERC20Burnable. As a result, the
locked account may still be able to burn their tokens.

819 a b s t r a c t cont ract ERC20Burnable i s Context , ERC20 {
820 /**
821 * @dev Destroys ‘amount ‘ tokens from the caller.
822 *
823 * See {ERC20 -_burn}.
824 */
825 f unc t i on burn ( uint256 amount ) pub l i c v i r t u a l {
826 _burn (_msgSender ( ) , amount ) ;
827 }
828
829 /**
830 * @dev Destroys ‘amount ‘ tokens from ‘account ‘, deducting from the caller ’s
831 * allowance.
832 *
833 * See {ERC20 -_burn} and {ERC20 -allowance }.
834 *
835 * Requirements:
836 *
837 * - the caller must have allowance for ‘‘accounts ‘‘’s tokens of at least
838 * ‘amount ‘.
839 */

19/29 PeckShield Audit Report #: 2020-108



Public

840 f unc t i on burnFrom ( address account , uint256 amount ) pub l i c v i r t u a l {
841 uint256 dec r e a s edA l l owance = a l l owance ( account , _msgSender ( ) ) . sub ( amount , "ERC20

: burn amount exceeds allowance" ) ;
842
843 _approve ( account , _msgSender ( ) , d e c r e a s edA l l owance ) ;
844 _burn ( account , amount ) ;
845 }
846 }

Listing 3.7: flat /ERC20Burnable

Recommendation Validate whether the account is being locked when burn() or burnFrom() is
called. The burn operation should not proceed if the account is being locked.

Status This issue has been confirmed.

3.5 Suggested Uses of SafeMath

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Staking

• Category: Numeric Errors [9]

• CWE subcategory: CWE-190 [3]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. During our
analysis of the staking logic in Staking, we notice several occasions whether SafeMath is not used.
Examples include the arithmetic operations at lines 164, 202, 216, and 283.

In the following, we choose two examples. The first example is the computation in returnEarningsPerAmount

(): (amount * returnEarningRatio()).div(1e18) (line 164). The multiplication of amount * returnEarningRatio

() is not guarded for overflow. We should point out that this multiplication will not overflow in this
particular usage scenario. However, it is always preferable to guarantee the overflow will always be
detected and blocked.

159 /**
160 * @dev Function to return earning ratio per given amount
161 * @param amount - amount in question
162 * @return number representing earning ratio for given amount
163 */
164 f unc t i on r e tu rnEarn ingsPerAmount ( uint256 amount ) pub l i c view re tu rn s ( uint256 ) {

166 re tu rn ( amount ∗ r e t u r nEa r n i n gRa t i o ( ) ) . d i v (1 e18 ) ;

20/29 PeckShield Audit Report #: 2020-108



Public

167 }

Listing 3.8: Staking :: returnEarningsPerAmount()

The second example is the computation in stake(): stakedAmount += amount (line 202). It is
suggested to replace it with stakedAmount = stakedAmount.add(amount).

202 f unc t i on s t a k e ( uint256 amount ) pub l i c {

204 r equ i r e ( amount >= 100 e18 , "Staking:stake - Minimum contribution amount is 100
AUDT tokens" ) ;

205 r equ i r e ( s t a k i n gDa t eS t a r t >= block . number , "Staking:stake - deposit period ended.
" ) ;

206 r equ i r e ( b l a c k l i s t e dA d d r e s s [msg . sender ] == f a l s e , "This address has been
blacklisted" ) ;

207 stakedAmount += amount ; // track tokens contributed so far
208 _rec e i v eDepo s i t ( amount ) ;
209 _de l i v e rS t ak i ngToken s ( amount ) ;
210 emit LogStak ingTokens I s sued (msg . sender , amount ) ;
211 }

Listing 3.9: Staking :: stake()

Recommendation Make use of SafeMath in the above calculations to better mitigate possible
overflows.

Status The issue has been fixed by this commit: c69e52f.

21/29 PeckShield Audit Report #: 2020-108

https://github.com/DAOCapsule/AUDT-Capsule-Lift-Off/commit/c69e52f33fe53a92a004bd5c36c26f2e81f64b60


Public

4 | Conclusion

In this audit, we have analyzed the Auditchain design and implementation. The system presents a
unique offering in enabling enterprises to provide stakeholders with the highest levels of assurance
through decentralized consensus-based enterprise external validation. The current code base is well
organized and those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

22/29 PeckShield Audit Report #: 2020-108



Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [12, 13,
14, 15, 17].

• Result: Not found

• Severity: Critical

23/29 PeckShield Audit Report #: 2020-108



Public

5.1.5 Reentrancy

• Description: Reentrancy [18] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

24/29 PeckShield Audit Report #: 2020-108



Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

25/29 PeckShield Audit Report #: 2020-108



Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

26/29 PeckShield Audit Report #: 2020-108



Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

27/29 PeckShield Audit Report #: 2020-108



Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[4] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[5] MITRE. CWE-754: Improper Check for Unusual or Exceptional Conditions. https://cwe.mitre.

org/data/definitions/754.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

28/29 PeckShield Audit Report #: 2020-108

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/189.html


Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[13] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[14] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[15] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[16] PeckShield. PeckShield Inc. https://www.peckshield.com.

[17] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[18] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

29/29 PeckShield Audit Report #: 2020-108

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Auditchain
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Oversized totalReward May Lock User Stakes
	Improved Sanity Checks For System Parameters
	AUDT Tokens Pausable For Migration, But Not Transfer
	Burnability of Locked Accounts
	Suggested Uses of SafeMath

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly


	References

